

Feb 19-8:47 AM

```
Testing claims:
                    SG 24-27
main idea }->\mathrm{ To Test a claim and
            determine its validity
    claim could be made about parameters
        1) Population Proportion P
        2) Population Mean }
        3) Population Standard deviation \sigma
ex: I claim 10% of all Students Smoke.
    claim about pop. Proportion.
ex: I claim the mean age of all students
    is below 32 Yrs. 
ex: I claim the standard deviation of
    monthly salaries of all nurses is
    at least $500. claim about Pop. Standurd
main task is to determine the validity of
    the claim. fail-to-Reject
If claim is valid }=>\mathrm{ We support it.
If claim is invalid }=>\mathrm{ we reject it.
```

```
why do we test a claim?
    Because we want to know if
    claim is valid or invalid.
    Possible errors:
    1) If we reject a valid claim.
    2) If we support an invalid claim.
    Final Conclusion:
Reject the claim OR Fail-to-Reject the 
"claim is invalid" "claim is valid"
```

Nov 21-7:01 PM

Nov 21-7:12 PM

Nov 21-7:23 PM

$$
P\left(H_{0} \text { Valid }\right)=1-\alpha=P\left(H_{1} \text { invalid }\right)
$$

\qquad

Nov 21-7:43 PM

Four Possible outcomes for H_{0} :

\qquad

I claim 10%. of all students Smoke.

$$
\begin{array}{lll}
P=.1 & H_{0}: P=.1 & \text { claim } \\
H_{0} & H_{1}: P \neq .1 & T T T
\end{array}
$$

I claim the mean age of all students
is below 32 Years $\mu<32$
$H_{0}: \mu \geq 32$
$H_{7}: \mu<32$ claim, LTT No equal Sign.
I claim standard deviation of Salaries of all nurses is at most $\$ 500$.

$$
\sigma \leq 500
$$

$$
H_{0}: \sigma \leq 500 \text { chain }
$$

$$
H_{1}: \sigma>500 \text { RT }
$$

Nov 21-7:53 PM

Nov 21-8:16 PM

Given CTS $t=-4.567, d f=10$, IT find P-value.

$$
\begin{aligned}
& =2 * \operatorname{tdf}(-E 99,-4.567,10) \quad \begin{array}{l}
\sigma \text { Unknown } \\
d f=10
\end{array} \\
& =.001
\end{aligned}
$$

Nov 21-8:26 PM

Nov 21-8:33 PM

$$
\begin{aligned}
& \text { Given CTS } x^{2}=7.5, d f=10, \text { TTT } \\
& \text { Find } P \text {-valve. } \\
& x^{2} d f(0,7.5,10) \\
& P \text { - value }=2 * \text { Smaller area }=2(.322)=.644
\end{aligned}
$$

Nov 21-8:42 PM

Given CTS $x^{2}=18.975$, RIT, $d f=8$
find p-value.
$x^{2} \operatorname{dff}(18.975, E 99,8)$

Nov 21-8:49 PM

Nov 21-8:54 PM

